Pullover aus Solarzellen
Licht statt auf eine Siliziumplatte auf kleine, aneinandergereihte Drähte treffen zu lassen, ermöglichte zwar, flexible Solarzellen herzustellen, stellte die Forscher vor einige Herausforderungen: Damit ein solcher Stoff wettbewerbsfähig ist, muss er einerseits ein breites Spektrum an unterschiedlichen Wellenlängen und Licht-Einfallswinkeln absorbieren können. Andererseits sollte er möglichst wenig des teuren Halbleiters Silizium enthalten. Den Forschern um Atwater ist beides gelungen: Der neue Stoff kann 85 Prozent des einfallenden Tageslichtes aufnehmen und enthält lediglich ein Hundertstel des Siliziums herkömmlicher Materialien.
Die Siliziumdrähte stellten die Wissenschaftler mit Hilfe der sogenannten Vapor-Liquid-Solid-Methode her, bei der sich Siliziumdampf auf einer Platte ablagert und mikroskopisch kleine Nanodrähte bildet. Die Drähtchen betteten die Forscher in einen durchsichtigen Trägerstoff ein und lösten den so entstandenen Film von seinem Untergrund. Bei diesem nun flexiblen Material maßen sie die aufgenommenen Wellenlängen des Lichts, die absorbierten Einfallswinkel und die Reflexion. Um die für die Energieaufnahme optimale Geometrie zwischen den Drähtchen zu ergründen, stellten die Forscher verschiedene dieser Solar-Filme her. Sie testeten unter anderem dreieckige, quadratische, zwölfeckige und zufällig gestreute Anordnungsmuster.
Wenn das einfallende Sonnenlicht auf die Oberfläche des Solar-Films treffe, hüpfe es mehrmals zwischen den verschiedenen Siliziumdrähten hin und her, bevor es absorbiert werde, erklären die Forscher. Kleine Aluminium-Nanopartikel zwischen den Stäbchen reflektieren das Licht zusätzlich und sorgen auf diese Weise dafür, dass es an den richtigen Ort gelenkt wird. Laut den Wissenschaftlern wird dadurch der photovoltaische Wirkungsgrad stark erhöht. Bisher gibt es das neue System allerdings nur für Anwendungen im Labor - ob und wann eine kommerzielle Variante folgen wird, dazu machen die Forscher keine Angaben.
Vielleicht interessiert Sie auch: